

Journal of Mechanical Science and Technology 22 (2008) 2180~2189

 www.springerlink.com/content/1738-494x
DOI 10.1007/s12206-008-0716-y

Journal of

Mechanical
Science and
Technology

Development of an authoring framework for the simplified

customization of PDM systems†

In-Ho Song1, Jeongsam Yang2,* and Beom Park2
1Department of Mechanical Engineering Carnegie Mellon University 5000 Forbes Avenue, Pittsburgh, PA 15213, U.S.A

2Division of Industrial & Information Systems Engineering Ajou University San 5, Wonchun-dong,
Yeongtong-gu, Suwon 443-749, Korea

(Manuscript Received August 14, 2007; Revised July 15, 2008; Accepted July 17, 2008)

--

Abstract

Given that the amount of product data in firms is explosively increasing, a PDM system for effective data manage-

ment is considered indispensable for product development. However, considerable time and specialized human re-
sources are needed to customize a generic PDM system for satisfying the specific requirements of individual firms. To
overcome this problem, we propose the use of UML object models in a PDM authoring framework. A PDM authoring
framework, which provides authoring functions for the effective customization of PDM systems, will reduce the need
for the intervention of PDM specialists in the design of the object models of the PDM system. We describe how a PDM
authoring framework may be designed by using UML object models, and show how model-oriented application devel-
opment (MOAD), in conjunction with the PDM authoring framework, can be used to build object models into a PDM
system. Furthermore, we confirm the value of the framework by evaluating its performance under several conditions.

Keywords: Authoring framework; Object model; Product data management (PDM); Unified modeling language (UML)
--

1. Introduction

In light of the explosive increase in the amount of
product data in firms, many companies have invested
in product data management (PDM) systems to create
a computing infrastructure that automates various
phases of the product development process. The in-
troduction of a PDM system for effective data man-
agement is critical for the product development proc-
ess; however, the time and cost that are involved in
the customization of PDM systems is a major stum-
bling block. When a PDM system is implemented, its
functions should comply with the work processes of
the company in question. Such compliance, however,
involves a tedious and time-consuming coding of jobs
because the PDM integration specialist is often

rushed in to implement specific functions.
Commercial PDM systems use various approaches

to overcome this problem. For instance, they create a
database schema in a manner similar to that for object
models in unified modeling language (UML), and
they use a database engine to handle objects for
searching and adding data. However, because these
PDM systems use a nonstandard object model, they
do not adequately satisfy the various complex re-
quirements of a company that is attempting to imple-
ment a PDM system. In other words, the modeling of
a company’s information is severely restricted by a
PDM system that cannot support multiple inheri-
tances or various complex relations between objects.
For these reasons, a discrepancy occurs between the
information structure of a company and that of the
PDM system that is implemented, which results in the
diminished utility of the company’s custom-built
PDM system.

In the PDM literature, Thimm et al. [1] asserted

†This paper was recommended for publication in revised form by Associate
Editor Dae-Eun Kim

*Corresponding author. Tel.: +82 31 219 2335, Fax.: +82 31 219 1610
E-mail address: jyang@ajou.ac.kr
© KSME & Springer 2008

 I.-H. Song et al. / Journal of Mechanical Science and Technology 22 (2008) 2180~2189 2181

that UML-based PDM modeling is suitable for mod-
eling business processes. They claimed that this type
of modeling, which is related to diverse methods of
information-rich representation, can express models
of various phases; they illustrated their method by
modeling the design process of a vacuum cleaner.
Sharma [2] used an IT-based, PDM framework to
study collaborative product innovation. Huang et al.
[3] used JAVA and J2EE technology to develop a
Web-based system of PDM. Eynard et al. [4] imple-
mented a UML-based PDM system and applied it to a
product data structure and workflow. Oh et al. [5]
suggested a mapping method, which was based on
UML and STEP, for integrating heterogeneous CAD
systems with PDM systems. Rezayat [6] investigated
the implementation of an enterprise Web portal that
was based on the Web standard and Web protocol,
CORBA/DCOM, which is a distributed object stan-
dard, as well as JAVA, XML and IIOP. Sheng et al.
[7] studied how PDM can be implemented on the
basis of object-oriented programming technology.
Sudarsan et al. [8] extended the core product model of
the National Institute of Standards and Technology,
while researching a method for modeling product life-
cycles. Most of the related works either featured ap-
proaches for designing PDM schemas or specifica-
tions or dealt with applications for solving operational
problems in the deployment of PDM systems. Further
research is needed to directly resolve problems in the
development of PDM systems; . in In particular, re-
search on PDM authoring tools should facilitate the
implementation of PDM systems for meeting the
various complex requirements of individual compa-
nies.

We propose a PDM authoring framework that re-
lies on a UML-based object model. Further, to en-
hance this authoring framework, we develop a PDM
customization tool called model-oriented application
development (MOAD). The MOAD authoring tool
obviates the need for directly coding jobs, and thereby
allows PDM engineers to concentrate on system
modeling. In addition, because the MOAD authoring
tool can be managed within a single system during
the customization of a PDM system, the PDM de-
ployment process is standardized and improves the
efficiency of application development. In the on-site
implementation of a PDM system, a consultant from
the PDM firm creates or modifies the data schema by
using our method and the MOAD authoring tool,
while an engineer in the field can continue the re-

Fig. 1. PDM customization process of the MOAD authoring
tool.

maining work after the modification of data.

Fig. 1 shows the process of MOAD, which uses the
PDM authoring framework to build object models.
When a PDM conceptual model is concretized, during
the PDM implementation process, as an object model
through the MOAD authoring tool, the object model is
generated inside the MOAD authoring tool through an
automatic database structure generator. For each tem-
plate, a dynamic user interface (UI) generator creates a
UI structure and a UI event process. The process of
PDM customization is finally completed by the crea-
tion and definition of events in relation to the UI and
the optimization process. While a conventional PDM
system performs this process through direct program-
ming, our method relies on an object modeler by using
the PDM authoring framework.

2. Design of a server in the PDM authoring
framework

2.1 Configuration
The MOAD, in conjunction with a PDM authoring
framework, can load various types of server modules,
depending on the architecture of the PDM system. As
shown in Fig. 2, a an MOAD server has the following
seven modules that meet the functional requirements
of a PDM system: a transaction controller; , a vault
controller; an object engine; a dynamic database
schema generator; a workflow engine; a name and
directory service; and a workspace manager. Table 1
describes in detail the functional purpose of these
modules. One MOAD server and one or more
MOAD clients in a PDM system communicate with
each other by using a network protocol called an In-
telligent intelligent Information information Pipeline
pipeline (IIP). The transaction controller manages the
connection with the database through the dynamic
database schema generator, and the vault controller is
linked with a physical file server into which CAD
data and documents are loaded.

2182 I.-H. Song et al. / Journal of Mechanical Science and Technology 22 (2008) 2180~2189

Table 1. Key functions of the MOAD server.

Functions of the server Description

Transaction controller
Manages the connection pool that con-
nects the database and the distributed

transaction

Vault controller
Functions as a sort of logical file server
and is responsible for archiving physical
files such as documents and CAD data

Object engine

Functions as a UML-based engine for
handling objects and is responsible for
managing class definitions and class
relations; also provides a function for

searching objects

Dynamic database
schema generator

Performs the function of applying a
logical structure that is defined as an

object engine to a physical database table

Workflow engine

Functions as a workflow engine with a
WfMC (Work work Flow flow Manage-

ment management Coalitioncoalition)
specification [11] and creates workflows

Name and directory
service

Provides a directory service similar to a
lightweight directory access protocol or

active directory [12]

Workspace manager Manages the personal work environment
that is created for each MOAD user

Fig. 2. Framework of the MOAD server.

2.2 UML-based object engine

The object engine in the MOAD authoring tool en-
ables us to define object models that can effectively
express the relations between object models. In addi-
tion, because this object engine can express UML
entities, such as multiple inheritance and association
among objects, it can reflect the unique data structure
of a company to the company’s own PDM system. As
shown in Fig. 3, the structure of the object engine
consists of an object-definition repository for manag-
ing meta objects and an object-instance processor for
managing object instances.

Table 2. The six functions of the object definition repository.

Functions Description

Class definition Defines objects and assigns their properties
and operations

Relation definition Defines relations between objects, such as
associations or aggregations in the UML

Code definition Provides functions for managing code-typed
data

UI definition
Defines a method for expressing defined

objects in the windows of a MOAD server
and MOAD clients

Numbering rule
Defines rules for automatically creating a

unique number for each object that is created
in an object modeler

Event definition
Provides events for performing additional

program codes at a specific point of time in
the process of creating and modifying objects

Fig. 3. Architecture of the object engine in the MOAD au-
thoring tool.

2.3 Object definition repository

The object-definition repository, which defines,
saves and manages objects, is designed on the basis of
a UML class diagram and includes all of the UML
concepts. As shown in Table 2, the object-definition
repository manages information under the following
six classifications: the class definition; , the relation
definition; the, code definition; the, UI definition; the,
numbering rule; , and the event definition. The physi-
cal database schema and the object-definition reposi-
tory are synchronized on the basis of information that
is saved in the latter. In addition, when the object
engine begins to run, all the information that is man-
aged by the object-definition repository is copied
from the database to memory. The checking and
searching of an object in the MOAD authoring tool

 I.-H. Song et al. / Journal of Mechanical Science and Technology 22 (2008) 2180~2189 2183

can be done without changing the information in the
repository. Thus, a rapid response is possible for all
memory processing.

2.4 Object-instance processor

The object-instance processor, which is based on
the properties that are saved in the object-definition
repository, creates and manages the data in each ob-
ject. As shown on the right side of Fig. 3, the applica-
tion program interfaces (APIs) of the object-instance
processor, which are used for creating objects or
searching for a particular object in the object-
definition repository, dynamically create a suitable
SQL (Structured structured Query query Language-
language) statement by using information from a
MOAD client.

The object-instance processor has a built-in object-
instance cache for enhancing the access performance
of an object engine. When object data are first ac-
cessed, they are saved in a cache. The data are main-
tained in the cache until any changes are made to the
data or until the cache space is full. Whenever any of
the data in the cache is needed, it can be acquired
from the cache with a considerably low processing
load and without running a program for creating a
complicated SQL statement. Thus, the object engine
can improve the speed of response and processing
capability.

2.5 Distributed database transaction controller

The distributed database transaction controller,
which is assigned to several databases, performs dis-
tributed transactions in the MOAD server. As shown
in Fig. 4, the object engine in the MOAD server uses
the distributed transaction management function to
manage the division of objects into several databases.

Fig. 4. Processing of distributed data sources for a distributed
transaction.

Using the distributed management function of the
distributed database transaction controller, the
MOAD server assigns a data source that is to be
saved in the database according to its class. The data
source of each class is then used to generate SQL
commands, such as those for creating and searching
data. Furthermore, depending on the relations be-
tween classes, the server performs transactions by
simultaneously accessing more than one data source.
In this case, the object engine collects data by con-
necting individual data sources and by reprocessing
the data that is stored in memory.

2.6 Object modeler

Fig. 5 shows a PDM system that was implemented
by using the MOAD authoring tool. The MOAD can
build various functions of the PDM system in accor-
dance with customer-defined specifications of the
following seven elements: the model; , the package; ,
the class; the field; , the action; , the field group; , and
the reference.

Model The model, which is a root-element of six
child-elements, has a unique identification (Ouid in
Fig. 5) and foundation package. Based on the concept
of an object model, the MOAD authoring tool ex-
presses all the object models in the window as a tree-
view list, and provides a framework for the customi-
zation of a PDM system by clarifying the structure
and behavior of the PDM system. As shown in Fig. 5,
whenever the object modeler is executed, the name of
the model on the left side of the tree-view is visible,
and each model has two tab menus, namely,: a model
menu and an event menu.

Package A package, which consists of several class
groups, is a common mechanism for grouping ele-
ments.

Fig. 5. Elements of the object modeler.

2184 I.-H. Song et al. / Journal of Mechanical Science and Technology 22 (2008) 2180~2189

Class A class is a group of objects that share the
same attributes, operations, relations and functional
meaning. In the MOAD authoring tool, a user, who
executes a MOAD client, creates individual objects
that define various types of information, such as part
information, CAD information, and document infor-
mation. A class has individual items of information
regarding relations, events and numbering rules.

Field A field is an abstract concept about the status
of various kinds of data pertaining to object classes;
the attributes of physical data in a database are saved
in fields.

Action An action is an attribute for adding individ-
ual functions to facilitate user-customization. Unlike
events, which are performed in specific situations that
are assigned beforehand, an action can execute work
by means of event-input through buttons that have
been directly added to a client’s UI.

Field group A field group has field items and ac-
tion items. It is responsible for setting up the contents
that are presented in tab items of the MOAD client’s
UI and for assigning the position of each tab item. A
field group is inherited by a parent class, and its name
can be overridden with that of the parent class.

Reference A reference defines the relation between
two classes. The class relation can be described as an
association, an aggregation or a composition. An
association, which defines the name of the interre-
lated classes, represents the horizontal relation be-
tween two objects; additionally, if an object must
have another relation, the association specifies the
characteristics of that relation. In addition, the asso-
ciation is used to attach a part to a document in the
MOAD. Fig. 6 illustrates an authoring process for
defining an association in the MOAD. Firstly, after
selecting the tab, Relation [annotation (a) in Fig. 6],
the user writes down an instance-name for the asso-
ciation in the edit box [annotation (b) in Fig. 6],
which is activated in the window that is at the bottom-
right. Secondly, the user selects Association from the
drop-down list of a combo box named Type [annota-
tion (c) in Fig. 6] and inputs an identifier of the object
into the edit-box, Code [annotation (d) in Fig. 6].
Lastly, the user writes down names that are repre-
sented in the object, End1, for a part [annotation (e) in
Fig. 6] and in the object, End2, for a document.

An aggregation, which is similar to an association
and which represents objects that are combined with
other objects, is used to represent relations between
the whole and the parts of several associations. To

Fig. 6. Representation of the association relation between a
part and a document by using the object modeler.

Fig. 7. Representation of the aggregation relation between a
product and a part.

define an aggregation using the MOAD, firstly, the
user first selects the tab, Relation [annotation (a) in
Fig. 7], and writes down the relation name on the edit
box [annotation (b) in Fig. 7]. Secondly, the user se-
lects Aggregation among the elements in a drop-down
list [annotation (c) in Fig. 7] and inputs an identifier
of the object into an edit-box named Code [annotation
(d) in Fig. 7]. Lastly, the user writes down names that
are represented in the object, End1, for a whole prod-
uct [annotation (e) in Fig. 7] and in the object, End2,
for an individual part.

A composition is a type of aggregation. The aggre-
gation and the composition, which represent a relation
that associates an object with other objects, are used
for the relation between a user and a department or
between a work-breakdown structure and work-

 I.-H. Song et al. / Journal of Mechanical Science and Technology 22 (2008) 2180~2189 2185

scheduling. In the case of a simple aggregation, where
a part can be shared by the whole, a composition
represents cases in which a part has a strong relation
with the whole [10].

3. Design of a client in the PDM authoring
framework

3.1 Configuration

Fig. 8 shows the client structure of the MOAD au-
thoring system. The structure consists of a dynamic
UI generator, a script invoker, a workflow monitor,
and an interface-adapter controller. Through an inter-
face-adapter controller and an adapter for CAD inte-
gration, the MOAD client is linked to eight commer-
cial CAD applications, namely,: CATIA V4, CATIA
V5, ProEngineer, Unigraphics, Solidworks, Inventor,
SolidEdge and I-DEAS. We used the APIs of the
eight CAD systems to develop the interface-adapter
controller and the adapter for CAD integration. Table
3 summarizes these modules.

Table 3. Key functions of the MOAD client.

Modules Description

Dynamic UI
generator

Relies on object models that are defined by
an object engine to provide a visualization

function for real-time composure of a client
window

Script invoker
Executes client script files that are defined by

an object engine and a workflow engine in
real-time

Workflow moni-
tor

Monitors processes that are being executed
by a workflow engine in real-time

Interface adapter
controller

Loads adapters for interfacing with external
programs such as CAD applications and

clients, and controls loaded adapters
Adapter for CAD

integration
Integrates the interface with commercial

CAD applications and clients

Fig. 8. Architecture of the MOAD client.

3.2 Dynamic UI generation

One of the critical factors of in customizing a PDM
system is to establish a user-friendly interface that
enables users to effectively access the PDM system.
Although UIs have the important capability of mak-
ing a data structure, they are often overlooked during
the customization of a PDM system. Hence, to make
all UIs within the PDM system operate in a normal-
ized sequence and to enable users to enhance the us-
ability of the data, we need to determine the optimal
UI configuration. Notwithstanding rich-client applica-
tions and the Web-based environment, dynamic UI
generation should be provided for users with the same
view.

To apply this requirement to a an MOAD client, we
propose the use of a window-composition tool called
a UI builder, which can effectively provide relevant
information to users. We developed the UI builder
after analyzing the windows and the UI structure of
commercial PDM systems. As shown in Fig. 9, the UI
builder uses an object engine to save all the informa-
tion about window composition on a an MOAD
server. The UI builder gathers the information about
window composition from an object-handling engine
and automatically creates a user-required UI in real-
time. In addition, the UI builder dynamically creates a
an HTML page that operates in the same way as a
page in a Web environment. Thus, if a PDM adminis-
trator or developer modifies the information on win-
dow composition, the change of information is auto-
matically applied to the rich-client application and the
Web-based environment. Fig. 10 displays a search
window for CAD data in the Web-based PDM system
that is created through the UI builder for dynamic UI
generation.

Fig. 9. Dynamic UI building processes of the UI builder.

2186 I.-H. Song et al. / Journal of Mechanical Science and Technology 22 (2008) 2180~2189

Fig. 10. A search window of the Web-based PDM system
that is customized by the UI builder.

3.3 Intelligent information pipeline

In general, the greater is the amount of data that is
stored in a database, the slower is the overall search
speed. We introduce an IIP to the MOAD authoring
framework, which does not affect total system per-
formance even when the amount of data is progres-
sively increasing. As shown in Fig. 8, an IIP is a net-
work protocol that acts as a sort of remote procedure
call at the lowest level of the MOAD authoring tool.
After recognizing the type of data that is sent to a
network, the IIP uses an intelligent transmission algo-
rithm that selects the optimal transmission route for
that type of data.

We introduce an object-handling engine for opti-
mal performance and the creation of a database
schema that is based on an object model. An object-
handling engine uses database attributes to estimate
the structure of the database schema and creates a
suitable SQL statement for each request. In addition,
if only one of various property values is changed, the
object-handling engine checks and modifies the prop-
erty to create an SQL statement that alters only the
content of the modified property. Furthermore, the
search for multiple items of data is more complicated
than the search for a single item of data because mul-
tiple items of data might involve more than one class
and might have a complicated inheritance relation. In
this case, the object-handling engine analyzes the
relations between all classes to identify the target
class that is needed in the search. Finally, similar to
the method used by an SQL optimizer in a database
system, the object-handling engine creates an optimal
SQL statement for searching. Due to the characteris-
tics of the object-handling engine, our IIP can over

Fig. 11. Object modeler of MOAD.

come the problem of slow response times in the face
of increasing amounts of data.

4. PDM implementation with MOAD

Fig. 11 shows an object modeler in MOAD under
the PDM authoring framework. Annotation (a) of Fig.
11 indicates a hierarchical, tree-view list of objects
and information, such as objects and fields that are
derived from the authoring framework. The node,
DynaPDM, refers to a root node that is implemented
with the model in the object modeler, as described in
section 2.6. The other nodes, ChangeControl, Docu-
ment and Drawing, were implemented by the package
in the object modeler. The child-nodes refer to nodes
of the Foundation package such as FCADFile, Ffile-
Control and so on, which are created by the class
function in the object modeler. Finally, the node,
FVersionObject, which includes the number, version,
description of the representative type, and the status
of each datum, is created by the field function in the
object modeler. Annotation (b) of Fig. 11 shows a
menu of the defining relations between classes ; this
menuthat can be used to define references, events and
the numbering rules. Annotation (c) of Fig. 11 shows
an input window for the attributes of each object.

Fig. 12 shows a workflow modeler of MOAD. An-
notation (a) shows a document-approval business
process that is generated by the workflow modeler of
MOAD, annotation (b) indicates the activities that
constitute a sublevel of a business process, and anno-
tation (c) shows a graphical process-editor for creat-
ing or editing a business workflow in a graphic envi-
ronment. By using these three functions, we can im-
plement a business process that complies with the
various types of requirements of a company.

 I.-H. Song et al. / Journal of Mechanical Science and Technology 22 (2008) 2180~2189 2187

Fig. 12. Workflow modeler of MOAD.

5. Evaluation of the search performance

To evaluate the performance of the MOAD author-
ing tool, we assigned the following target objects:

(1) The creation of one abstract class, as shown in
Fig. 13, followed by the creation of 15 leaf classes
that are inherited from the abstract class.

(2) The selection of all the leaf classes from the
same data source whenever the leaf classes are cre-
ated.

(3) The creation of the same property and a differ-
ent property, respectively, for each leaf class.

Table 4 shows the environment of the client system
and the server system that we used to evaluate the
performance. The four steps of the evaluation were as
follows. First, after searching all the class data in a
database of 60,000 items of class data, we measured
the time that elapsed before the search results were
displayed on a client window. As shown by annota-
tion A (a) of Fig. 14, the elapsed time was 10.5 sec-
onds. Second, for 40,000 items of class data stored in
the database, the search lasted 6.3 seconds before all
the data was displayed on a client window (as shown
by annotation B (b) of Fig. 14). Third, 10,000 results
were displayed on a client window when we specified
a search condition for 60,000 items of data in the
database. In this case, as shown by annotation C (c) of
Fig. 14, the search lasted 1.7 seconds. Fourth, 1,000
results were displayed on a client window when we
specified a search condition for a database of 60,000
items of class data, and the elapsed time for display-
ing the search results was less than 1 second, as
shown by annotation D (d) of Fig. 14.

To achieve a reasonable evaluation, we repeated
the test six times and after discarding the best and
worst results, we averaged the remaining measure-

Table 4. The system environment that is used for the evalua-
tion of the search performance.

Database server
Windows XP Pro,

Intel Pentium 4 2.8 GHz, 1 GB RAM
Oracle 9i R2 (9.2.0.1.0)

Application server

Windows XP Pro,
Intel Pentium 4 2.8 GHz, 1 GB RAM

MOAD Server v1.0
Java™ 2 SE 1.4.2_05 HotSpot™ Server

VM

Client

Windows XP Pro,
Intel Pentium 4 2.8 GHz, 1 GB RAM

MOAD Client v1.0
Java™ 2 SE 1.4.2_05 HotSpot™ Client

VM

Network 100 Mbps Ethernet

Fig. 13. The creation of an abstract class with the MOAD
authoring tool.

Fig. 14. Evaluation results of the search performance.

ments. The evaluation results confirm that the search
and viewing speed of our authoring system is be-
tween eight and 17 percent faster than that of a com-
mercial PDM system under the same conditions.

2188 I.-H. Song et al. / Journal of Mechanical Science and Technology 22 (2008) 2180~2189

6. Conclusion

In recent times, several companies have invested in
PDM systems for the purpose of conducting and
managing various phases of the product development
process as a unified process. However, because a
PDM system should be implemented in compliance
with each company’s own work processes, the im-
plementation is time-consuming and requires many
PDM specialists. For this reason, the introduction and
operation of the PDM system in a company tends to
cause a bottleneck. To overcome these problems, we
proposed a PDM authoring framework that enables us
to use UML object models to simplify the customiza-
tion of PDM systems.

In sum, we adopted the following, three-pronged
approach to implement the PDM authoring framework.

(1) We developed a UML-based, object modeler
for the design of the PDM authoring framework. Our
object modeler and the MOAD authoring tool enable
the data structure of a company to be applied to the
PDM system, particularly with respect to the relations
between objects, such as the multiple inheritance that
results from UML modeling.

(2) We proposed a UI builder for the convenience
of UI manipulation in the client application of the
PDM system. Through the UI builder, we can auto-
matically create a suitable UI in real-time once the
object engine provides the requisite information on
the window layout of the PDM system. This capabil-
ity enables users, who lack programming skills, to
participate in the development of the PDM system; it
can also reduce the time and cost that is involved in
customizing the PDM system.

(3) We applied a sort of communication protocol
called an IIP to the MOAD authoring tool. Our
evaluation of the search performance confirms that
the IIP can expedite searches, even for large databases.

The MOAD authoring tool has already been com-
mercialized and research is currently underway on a
script-based, PDM platform to enable more effective
authoring functions.

(4) We applied a sort of communication protocol
called an IIP to the MOAD authoring tool. Our
evaluation of the search performance confirms that
the IIP can expedite searches, even for huge databases.

The MOAD authoring tool has already been com-
mercialized and research is currently underway on a
script-based PDM platform for more effective author-
ing functions.

Acknowledgement

This research is supported by the Foundation of
ubiquitous Ubiquitous computing Computing and
networking Networking project (UCN) Project, the
Ministry of Knowledge Economy (MKE) 21st Cen-
tury Frontier R&D Program in Korea and a result of
subproject UCN 08B3-O3-20S.

References

[1] G. Thimm, S. G. Lee and Y. S. Ma, Towards uni-
fied modeling of product life-cycles, Computers in
Industry, 57 (2006) 331-341.

[2] A. Sharma, Collaborative product innovation: inte-
grating elements of CPI via PLM framework, Com-
puters-Aided Design, 37 (2005) 1425-1434.

[3] M. Y. Huang, Y. Y. Lin and H. Xu, A framework
for Web-based product data management using
J2EE, International Journal of Advanced Manufac-
turing Technology, 24 (2004) 847-852.

[4] B. Eynard, T. Gallet, P. Nowak and L. Roucoules,
UML based specifications of PDM product struc-
ture and workflow, Computer in Industry, 55 (2004)
301-316.

[5] Y. C. Oh, S. H. Han and H. W. Suh, Mapping prod-
uct structures between CAD and PDM systems us-
ing UML, Computers-Aided Design, 33 (7) (2001)
521-529.

[6] M. Rezayat, The enterprise-Web portal for life-
cycle support, Computers-Aided Design, 32 (2)
(2000) 85-96.

[7] B. Sheng, J. Yu, Z. Ma and Z. Zhou, Research on
the modeling of PDM system based on object-
oriented technique, In: The 8th International Con-
ference on Computer Supported Cooperative Work
in Design, 2004, 747-752, Xiamen, China (2004).

[8] R. Sudarsan, S. J. Fenves, R. D. Sriram and F.
Wang, A product information modeling framework
for product lifecycle management, Computer-Aided
Design, 37 (2005) 1399-1411.

[9] I. -H. Song and S. -C. Chung, Geometric kernel
design of the Web-viewer for the PDM based as-
sembly DMU, Transaction of KSME (A), 31 (2)
(2007) 260-268.

[10] Object Management Group (1997). The Unified
Modeling Language Release 1.1, Reference Manual.
Available at http://www.omg.org/.

[11] The Workflow Management Coalition. Available
at http://www.wfmc.org.

 I.-H. Song et al. / Journal of Mechanical Science and Technology 22 (2008) 2180~2189 2189

[12] Lightweight Directory Access Protocol RFC 2251.
Available at http://www.faqs.org/rfcs/rfc2251.html.

Inho Song is a postdoctoral
associate in the Department of
Mechanical Engineering, Car-
negie Mellon University, USA.
He received the Ph.D. degree in
Mechanical Engineering from
Hanyang University, Seoul,
Korea in 2007. From 2002 to

2007, he served as a CAx team leader of the INOPS
Company (CIES R&D Center), Seoul, Korea. He has
developed the sketch-based CAD system for an
automotive company. His research interests include
collaborative design, sketch-based CAD, geometry
translation, geometry compression, product data ex-
change, PDM/PLM, digital manufacturing, and vir-
tual reality.

Jeongsam Yang is an assistant
professor in the Department of
Industrial & Information Sys-
tems Engineering and is leading
the CAD laboratory(http://cad-
lab. kaist.ac.kr) at Ajou Univer-
sity. He worked at Clausthal
University of Technology (Ger-

many) as a visiting researcher and the University of
Wisconsin-Madison (USA) as a postdoctoral associ-
ate. He obtained his Ph.D. in mechanical engineering
in 2004 at KAIST. His current research interests are
product data quality (PDQ), VR application in prod-
uct design, product data management (PDM), knowl-
edge-based design system, and STEP.

Peom Park is a professor in the
Department of Industrial &
Information Systems Engineer-
ing and is leading the Human
Technology Research Center
and Human Factors/HCI labo-
ratory (http://hci.ajou.ac.kr) at
Ajou University. He worked on

HCI and Telecommunication system at ETRI as a
senior researcher. He obtained his Ph.D. in Industrial
and Manufacturing Systems Engineering at Iowa
State University on 1992. His current research inter-
ests are uT applications, u-Healthcare/Telemedicine,
Telematics and Ergonomic/Safety Design.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

